OPTIMISATION OF SHALLOW FOUNDATIONS FOR ONSHORE WIND TURBINES

Author: Chisom Ifeobu Supervisor: Dr Christelle Abadie

INTRODUCTION

COSTS £300 million in construction costs $1.176 \times 10^6 \text{ m}^3 \text{ of concrete}$ 370 x 10³ tonnes of emitted carbon

RESEARCH OBJECTIVES: Understand the geomechanics behind the lifetime performance of shallow foundations to propose an optimised geometry that will: Reduce the carbon footprint Reduce the cost of scaling up

CONVENTIONAL DESIGN

All values are estimated for an onshore wind farm with 1000 6 MW turbines

M/M_U

(m

(deg) 0.1

02

POTENTIAL SAVINGS £70 million in construction costs 292 x 10³ m³ of concrete 87 x 10³ tonnes of embodied carbon

onshore wind energy globally

POTENTIAL OPTIMISED DESIGN(S)

METHODOLOGY

- **Centrifuge experiments**: representative stress levels
- Performed at enhanced gravity of **100**
- Dense Hostun Sand (RD ≈
- Dimensions representative of **2 MW turbine** scaled to plane strain conditions
- Deformation measured with Linear Variable Differential Transformers (LVDTs)
- Soil deformations and deformation mechanisms captured with Particle Image Velocimetry (PIV)
- Load-controlled cyclic lateral loading at relevant
- Aluminium footing with H= 2m and B = 9 m

Figure 1. Model container with embedded footing ready for testing

Figure 2. Schematic of footing (prototype scale)

Effect of embedment depth on cyclic performance of the footing

BGA ANNUAL CONFERENCE 2022

CONCLUSIONS AND FUTURE WORK

- Figure 6. Soil deformation mechanisms at the end of load packet CY4. Displacement field overlain on maximum shear strain contours.
- The design of shallow foundations for onshore wind applications requires careful consideration of the number of cycles and load levels experienced
- The accumulated rotation and settlement over the lifetime of a shallow onshore wind turbine foundation can be large
- Enhanced geotechnical performance can be achieved significantly by increasing the embedment depth

Future work involves further tests on the geotechnical centrifuge in both plane-strain conditions and in 3D to elucidate: Can we understand this further by analyzing the soil deformation mechanism at larger plasticity levels (Figure 6)? > Can this property be exploited to reduce the size of the foundation?

Can simple design guidelines be recommended to enable more cost effective and less CO₂ intensive scaling up of onshore wind energy globally?

UNIVERSITYOF UNIVERSITYOF CAMBRIDGE